🤔Что делать, если в небольшом размеченном наборе сильно несбалансированные классы, но среди неразмеченных данных, возможно, есть представители миноритарного класса
Когда классы сильно несбалансированы, модель может вообще не научиться распознавать редкий класс — особенно если в размеченных данных он почти не представлен. Это особенно критично, если модель начинает обучение уже с перекосом в сторону большинства.
🛠Как с этим справиться
1. Усиливаем вклад миноритарного класса в функцию потерь — Используем взвешивание классов или focal loss, который автоматически усиливает вклад трудных примеров.
2. Применяем регуляризацию на неразмеченных данных — Например, consistency regularization, при которой модель должна давать стабильные предсказания при слабых искажениях входа.
3. Активный отбор редких примеров среди неразмеченного пула — Можно применять кластеризацию и отбирать для разметки точки из «редких» кластеров — это метод active cluster labeling.
4. Анализируем предсказания модели на неразмеченных данных — Если модель слабо уверена в каком-то сегменте — возможно, это и есть миноритарный класс. Такие точки можно приоритизировать для ручной разметки.
🤔Что делать, если в небольшом размеченном наборе сильно несбалансированные классы, но среди неразмеченных данных, возможно, есть представители миноритарного класса
Когда классы сильно несбалансированы, модель может вообще не научиться распознавать редкий класс — особенно если в размеченных данных он почти не представлен. Это особенно критично, если модель начинает обучение уже с перекосом в сторону большинства.
🛠Как с этим справиться
1. Усиливаем вклад миноритарного класса в функцию потерь — Используем взвешивание классов или focal loss, который автоматически усиливает вклад трудных примеров.
2. Применяем регуляризацию на неразмеченных данных — Например, consistency regularization, при которой модель должна давать стабильные предсказания при слабых искажениях входа.
3. Активный отбор редких примеров среди неразмеченного пула — Можно применять кластеризацию и отбирать для разметки точки из «редких» кластеров — это метод active cluster labeling.
4. Анализируем предсказания модели на неразмеченных данных — Если модель слабо уверена в каком-то сегменте — возможно, это и есть миноритарный класс. Такие точки можно приоритизировать для ручной разметки.
Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.
What is Telegram?
Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.
Библиотека собеса по Data Science | вопросы с собеседований from ru